§71.74

- (3) Puncture. A free drop of the specimen through a distance of 1 m (40 in) in a position for which maximum damage is expected, onto the upper end of a solid, vertical, cylindrical, mild steel bar mounted on an essentially unyielding, horizontal surface. The bar must be 15 cm (6 in) in diameter, with the top horizontal and its edge rounded to a radius of not more than 6 mm (0.25 in), and of a length as to cause maximum damage to the package, but not less than 20 cm (8 in) long. The long axis of the bar must be vertical.
- (4) Thermal. Exposure of the specimen fully engulfed, except for a simple support system, in a hydrocarbon fuel/air fire of sufficient extent, and in sufficiently quiescent ambient conditions, to provide an average emissivity coefficient of at least 0.9, with an average flame temperature of at least 800 °C (1475 °F) for a period of 30 minutes, or any other thermal test that provides the equivalent total heat input to the package and which provides a time averaged environmental temperature of 800 °C. The fuel source must extend horizontally at least 1 m (40 in), but may not extend more than 3 m (10 ft), beyond any external surface of the specimen, and the specimen must be positioned 1 m (40 in) above the surface of the fuel source. For purposes of calculation, the surface absorptivity coefficient must be either that value which the package may be expected to possess if exposed to the fire specified or 0.8, whichever is greater; and the convective coefficient must be that value which may be demonstrated to exist if the package were exposed to the fire specified. Artificial cooling may not be applied after cessation of external heat input, and any combustion of materials of construction, must be allowed to proceed until it terminates naturally.
- (5) Immersion—fissile material. For fissile material subject to §71.55, in those cases where water inleakage has not been assumed for criticality analysis, immersion under a head of water of at least 0.9 m (3 ft) in the attitude for which maximum leakage is expected.
- (6) Immersion—all packages. A separate, undamaged specimen must be subjected to water pressure equivalent to immersion under a head of water of

at least 15 m (50 ft). For test purposes, an external pressure of water of 150 kPa (21.7 lbf/in^2) gauge is considered to meet these conditions.

[60 FR 50264, Sept. 28, 1995, as amended at 69 FR 3795, Jan. 26, 2004]

§71.74 Accident conditions for air transport of plutonium.

- (a) Test conditions—Sequence of tests. A package must be physically tested to the following conditions in the order indicated to determine their cumulative effect.
- (1) Impact at a velocity of not less than 129 m/sec (422 ft/sec) at a right angle onto a flat, essentially unyielding, horizontal surface, in the orientation (e.g., side, end, corner) expected to result in maximum damage at the conclusion of the test sequence.
- (2) A static compressive load of 31,800 kg (70,000 lbs) applied in the orientation expected to result in maximum damage at the conclusion of the test sequence. The force on the package must be developed between a flat steel surface and a 5 cm (2 in) wide, straight, solid, steel bar. The length of the bar must be at least as long as the diameter of the package, and the longitudinal axis of the bar must be parallel to the plane of the flat surface. The load must be applied to the bar in a manner that prevents any members or devices used to support the bar from contacting the package.
- (3) Packages weighing less than 227 kg (500 lbs) must be placed on a flat, essentially unyielding, horizontal surface, and subjected to a weight of 227 kg (500 lbs) falling from a height of 3 m (10 ft) and striking in the position expected to result in maximum damage at the conclusion of the test sequence. The end of the weight contacting the package must be a solid probe made of mild steel. The probe must be the shape of the frustum of a right circular cone, 30 cm (12 in) long, 20 cm (8 in) in diameter at the base, and 2.5 cm (1 in) in diameter at the end. The longitudinal axis of the probe must be perpendicular to the horizontal surface. For packages weighing 227 kg (500 lbs) or more, the base of the probe must be placed on a flat, essentially unyielding horizontal surface, and the package dropped from a height of 3 m (10 ft)

onto the probe, striking in the position expected to result in maximum damage at the conclusion of the test sequence.

- (4) The package must be firmly restrained and supported such that its longitudinal axis is inclined approximately 45° to the horizontal. The area of the package that made first contact with the impact surface in paragraph (a)(1) of this section must be in the lowermost position. The package must be struck at approximately the center of its vertical projection by the end of a structural steel angle section falling from a height of at least 46 m (150 ft). The angle section must be at least 1.8 m (6 ft) in length with equal legs at least 13 cm (5 in) long and 1.3 cm (0.5 in) thick. The angle section must be guided in such a way as to fall end-on, without tumbling. The package must be rotated approximately 90° about its longitudinal axis and struck by the steel angle section falling as before.
- (5) The package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes. The luminous flames must extend an average of at least 0.9 m (3 ft) and no more than 3 m (10 ft) beyond the package in all horizontal directions. The position and orientation of the package in relation to the fuel must be that which is expected to result in maximum damage at the conclusion of the test sequence. An alternate method of thermal testing may be substituted for this fire test, provided that the alternate test is not of shorter duration and would not result in a lower heating rate to the package. At the conclusion of the thermal test, the package must be allowed to cool naturally or must be cooled by water sprinkling, whichever is expected to result in maximum damage at the conclusion of the test sequence.
- (6) Immersion under at least 0.9 m (3 ft) of water.
- (b) Individual free-fall impact test. (1) An undamaged package must be physically subjected to an impact at a velocity not less than the calculated terminal free-fall velocity, at mean sea level, at a right angle onto a flat, essentially unyielding, horizontal surface, in the orientation (e.g., side, end, corner) expected to result in maximum damage.

- (2) This test is not required if the calculated terminal free-fall velocity of the package is less than 129 m/sec (422 ff/sec), or if a velocity not less than either 129 m/sec (422 ff/sec) or the calculated terminal free-fall velocity of the package is used in the sequential test of paragraph (a)(1) of this section.
- (c) Individual deep submersion test. An undamaged package must be physically submerged and physically subjected to an external water pressure of at least 4 MPa (600 lbs/in²).

§ 71.75 Qualification of special form radioactive material.

- (a) Special form radioactive materials must meet the test requirements of paragraph (b) of this section. Each solid radioactive material or capsule specimen to be tested must be manufactured or fabricated so that it is representative of the actual solid material or capsule that will be transported, with the proposed radioactive content duplicated as closely as practicable. Any differences between the material to be transported and the test material, such as the use of non-radioactive contents, must be taken into account in determining whether the test requirements have been met. In addition:
- (1) A different specimen may be used for each of the tests:
- (2) The specimen may not break or shatter when subjected to the impact, percussion, or bending tests;
- (3) The specimen may not melt or disperse when subjected to the heat test:
- (4) After each test, leaktightness or indispersibility of the specimen must be determined by a method no less sensitive than the leaching assessment procedure prescribed in paragraph (c) of this section. For a capsule resistant to corrosion by water, and which has an internal void volume greater than 0.1 milliliter, an alternative to the leaching assessment is a demonstration of leaktightness of $\times 10^{-4}$ torr-liter/s $(1.3\times\times10^{-4} \text{ atm-cm}^3/\text{s})$ based on air at 25 °C (77 °F) and one atmosphere differential pressure for solid radioactive content, or $\times 10^{-6}$ torr-liter/s $(1.3 \times \times 10^{-6})$ $atm-cm^3/s$) for liquid or gaseous radioactive content; and
- (5) A specimen that comprises or simulates radioactive material contained